Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.329
Filter
1.
Sci Rep ; 14(1): 10592, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719900

ABSTRACT

Umbelliferous (Apiaceae) vegetables are widely consumed worldwide for their nutritive and health benefits. The main goal of the current study is to explore the compositional heterogeneity in four dried umbelliferous vegetables viz, celery, coriander, dill, and parsley targeting their volatile profile using gas chromatography-mass spectrometry (GC-MS). A total of 133 volatile metabolites were detected belonging to 12 classes. Aromatic hydrocarbons were detected as the major components of the analyzed vegetables accounting ca. 64.0, 62.4, 59.5, and 47.8% in parsley, dill, celery, and coriander, respectively. Aliphatic hydrocarbons were detected at ca. 6.39, 8.21, 6.16, and 6.79% in parsley, dill, celery, and coriander, respectively. Polyunsaturated fatty acids (PUFA) of various health benefits were detected in parsley and represented by roughanic acid and α-linolenic acid at 4.99 and 0.47%, respectively. Myristicin and frambinone were detected only in parsley at 0.45 and 0.56%. Investigation of antibacterial activity of umbelliferous vegetables n-hexane extract revealed a moderate antibacterial activity against Gram-positive and Gram-negative bacteria with higher activity for celery and dill against Staphylococcus aureus with inhibition zone 20.3 mm compared to 24.3 mm of the standard antibacterial drug.


Subject(s)
Anti-Bacterial Agents , Gas Chromatography-Mass Spectrometry , Hexanes , Phytochemicals , Vegetables , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/analysis , Vegetables/chemistry , Phytochemicals/chemistry , Phytochemicals/analysis , Phytochemicals/pharmacology , Hexanes/chemistry , Apiaceae/chemistry , Microbial Sensitivity Tests , Allylbenzene Derivatives , alpha-Linolenic Acid/analysis , alpha-Linolenic Acid/pharmacology , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Plant Oils/pharmacology , Plant Oils/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Fatty Acids, Unsaturated/analysis , Staphylococcus aureus/drug effects , Dioxolanes
2.
BMC Vet Res ; 20(1): 184, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724994

ABSTRACT

Cinnamon and star anise essential oils are extracted from natural plants and provide a theoretical basis for the development and clinical application of compound essential oil pellets. However, cinnamon oil and star anise oil have the characteristics of a pungent taste, extreme volatility, poor palatability, and unstable physical and chemical properties, which limit their clinical use in veterinary medicine. In this study, the inhibitory effects of cinnamon oil and star anise oil on Escherichia coli and Salmonella were measured. Compound essential oil pellets were successfully prepared by centrifugal granulation technology. Subsequently, the in vitro dissolution of the pellets and their pharmacokinetics in pigs were investigated. The results showd that, cinnamon and star anise oils showed synergistic or additive inhibitiory effects on Escherichia coli and Salmonella. The oil pellets had enteric characteristics in vitro and high dissolution in vitro. The pharmacokinetic results showed that the pharmacokinetic parameters Cmax and AUC were directly correlated with the dosage and showed linear pharmacokinetic characteristics, which provided a theoretical basis for the development and clinical application of compound essential oil pellets.


Subject(s)
Cinnamomum zeylanicum , Escherichia coli , Oils, Volatile , Animals , Oils, Volatile/pharmacokinetics , Oils, Volatile/administration & dosage , Cinnamomum zeylanicum/chemistry , Escherichia coli/drug effects , Swine , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Salmonella/drug effects , Satureja/chemistry , Plant Oils/pharmacokinetics , Plant Oils/chemistry , Male , Centrifugation
3.
Food Res Int ; 186: 114381, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729735

ABSTRACT

Lipid has crucial applications in improving the quality of starchy products during heat processing. Herein, the influence of lipid modification and thermal treatment on the physicochemical properties and starch digestibility of cooked rice prepared with varied addition manipulations was investigated. Rice bran oil (RO) and medium chain triglyceride oil (MO) manipulations were performed either before (BC) or after cooking (AC). GC-MS was applied to determine the fatty acid profiles. Nutritional quality was analyzed by quantifying total phenolics, atherogenic, and thrombogenic indices. All complexes exhibited higher surface firmness, a soft core, and less adhesive. FTIR spectrum demonstrated that the guest component affected some of the dense structural attributes of V-amylose. The kinetic constant was in the range between 0.47 and 0.86 min-1 wherein before mode presented a higher value. The lowest glucose release was observed in the RO_BC sample, whereas the highest complexing index was observed in the RO_AC sample, indicating that the dense molecular configuration of complexes that could resist enzymatic digestion was more critical than the quantity of complex formation. Despite the damage caused by mass and heat transfer, physical barrier, intact granule forms, and strengthened dense structure were the central contributors affecting the digestion characteristics of lipid-starch complexes.


Subject(s)
Cooking , Digestion , Oryza , Rice Bran Oil , Starch , Triglycerides , Oryza/chemistry , Starch/chemistry , Rice Bran Oil/chemistry , Triglycerides/chemistry , Hot Temperature , Fatty Acids/analysis , Fatty Acids/chemistry , Plant Oils/chemistry , Spectroscopy, Fourier Transform Infrared , Nutritive Value , Amylose/chemistry , Gas Chromatography-Mass Spectrometry
4.
Parasit Vectors ; 17(1): 202, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711138

ABSTRACT

BACKGROUND: The Lone Star tick, Amblyomma americanum is important to human health because of a variety of pathogenic organisms transmitted to humans during feeding events, which underscores the need to identify novel approaches to prevent tick bites. Thus, the goal of this study was to test natural and synthetic molecules for repellent activity against ticks in spatial, contact and human fingertip bioassays. METHODS: The efficacy of essential oils and naturally derived compounds as repellents to Am. americanum nymphs was compared in three different bioassays: contact, spatial and fingertip repellent bioassays. RESULTS: Concentration response curves after contact exposure to 1R-trans-chrysanthemic acid (TCA) indicated a 5.6 µg/cm2 concentration required to repel 50% of ticks (RC50), which was five- and sevenfold more active than DEET and nootkatone, respectively. For contact repellency, the rank order of repellency at 50 µg/cm2 for natural oils was clove > geranium > oregano > cedarwood > thyme > amyris > patchouli > citronella > juniper berry > peppermint > cassia. For spatial bioassays, TCA was approximately twofold more active than DEET and nootkatone at 50 µg/cm2 but was not significantly different at 10 µg/cm2. In spatial assays, thyme and cassia were the most active compounds tested with 100% and 80% ticks repelled within 15 min of exposure respectively and was approximately twofold more effective than DEET at the same concentration. To translate these non-host assays to efficacy when used on the human host, we quantified repellency using a finger-climbing assay. TCA, nootkatone and DEET were equally effective in the fingertip assay, and patchouli oil was the only natural oil that significantly repelled ticks. CONCLUSIONS: The differences in repellent potency based on the assay type suggests that the ability to discover active tick repellents suitable for development may be more complicated than with other arthropod species; furthermore, the field delivery mechanism must be considered early in development to ensure translation to field efficacy. TCA, which is naturally derived, is a promising candidate for a tick repellent that has comparable repellency to commercialized tick repellents.


Subject(s)
Amblyomma , Oils, Volatile , Animals , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Amblyomma/drug effects , Insect Repellents/pharmacology , Humans , Plant Oils/pharmacology , Plant Oils/chemistry , Nymph/drug effects , Biological Assay , DEET/pharmacology
5.
Sci Rep ; 14(1): 10052, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698117

ABSTRACT

The Apiaceae family contains many species used as food, spice and medicinal purposes. Different parts of plants including seeds could be used to obtain essential (EO) oils from members of the Apiaceae family. In the present study, EOs were components obtained through hydrodistillation from the seeds of anise (Pimpinella anisum), carrot (Daucus carota), celery (Apium graveolens), dill (Anethum graveolens), coriander (Coriandrum sativum), fennel (Foeniculum vulgare), and cumin (Cuminum cyminum). EO constituents were determined with Gas Chromatography/Mass Spectrometry (GC-MS) and Gas Chromatography/Flame Ionization Detector (GC-FID) and their antioxidant capacities were determined with the cupric reducing antioxidant capacity (CUPRAC) and 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) methods. The antimicrobial activity of EOs were tested against four pathogenic bacteria. Phenylpropanoids in anise (94.87%) and fennel (92.52%), oxygenated monoterpenes in dill (67.59%) and coriander (98.96%), monoterpene hydrocarbons in celery (75.42%), mono- (45.42%) and sesquiterpene- (43.25%) hydrocarbons in carrots, monoterpene hydrocarbon (34.30%) and aromatic hydrocarbons (32.92%) in cumin were the major compounds in the EOs. Anethole in anise and fennel, carotol in carrot, limonene in celery, carvone in dill, linalool in coriander, and cumin aldehyde in cumin were predominant compounds in these EOs. The high hydrocarbon content in cumin EO gave high CUPRAC activity (89.07 µmol Trolox g-1), and the moderate monoterpene hydrocarbon and oxygenated monoterpene content in dill EO resulted in higher DPPH activity (9.86 µmol Trolox g-1). The in vitro antibacterial activity of EOs against Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli was evaluated using the agar diffusion method and the minimum bactericidal concentration was determined. Coriander, cumin and dill EOs showed inhibitory effect against all tested strains except P. aeruginosa. While fennel and celery EOs were effective against E. coli and B. cereus strains, respectively, anise and carrot EOs did not show any antibacterial effect against the tested bacteria. Hierarchical Cluster Analysis (HCA) produced four groups based on EO constituents of seven species. The potential adoption of the cultivated Apiaceae species for EO extraction could be beneficial for the wild species that are endangered by over collection and consumption.


Subject(s)
Antioxidants , Apiaceae , Daucus carota , Foeniculum , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/analysis , Apiaceae/chemistry , Daucus carota/chemistry , Foeniculum/chemistry , Cuminum/chemistry , Gas Chromatography-Mass Spectrometry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Coriandrum/chemistry , Seeds/chemistry , Anethum graveolens/chemistry , Pimpinella/chemistry , Plant Oils/pharmacology , Plant Oils/chemistry , Apium/chemistry
6.
J Vis Exp ; (206)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38709074

ABSTRACT

Utilizing vegetable oil as a sustainable feedstock, this study presents an innovative approach to ultrasonic-assisted transesterification for biodiesel synthesis. This alkaline-catalyzed procedure harnesses ultrasound as a potent energy input, facilitating the rapid conversion of extra virgin olive oil into biodiesel. In this demonstration, the reaction is run in an ultrasonic bath under ambient conditions for 15 min, requiring a 1:6 molar ratio of extra virgin olive oil to methanol and a minimum amount of KOH as the catalyst. The physiochemical properties of biodiesel are also reported. Emphasizing the remarkable advantages of ultrasonic-assisted transesterification, this method demonstrates notable reductions in reaction and separation times, achieving near-perfect purity (~100%), high yields, and negligible waste generation. Importantly, these benefits are achieved within a framework that prioritizes safety and environmental sustainability. These compelling findings underscore the effectiveness of this approach in converting vegetable oil into biodiesel, positioning it as a viable option for both research and practical applications.


Subject(s)
Biofuels , Plant Oils , Plant Oils/chemistry , Esterification , Hydroxides/chemistry , Olive Oil/chemistry , Ultrasonic Waves , Potassium Compounds/chemistry , Catalysis
7.
Rapid Commun Mass Spectrom ; 38(14): e9761, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38714820

ABSTRACT

RATIONALE: Himalayan marmot oil (SPO) has been used for pharmaceutical purposes for centuries, but its composition is still unclear. The bioactivity of SPO highly depends on the techniques used for its processing. This study focused on the comprehensive lipidomics of SPO, especially on the ones derived from dry rendering, wet rendering, cold pressing, and ultrasound-assisted solvent extraction. METHODS: We performed lipid profiling of SPO acquired by different extraction methods using ultrahigh-performance liquid chromatography Q-Exactive Orbitrap mass spectrometry, and 17 classes of lipids (2 BMPs, 12 LysoPCs, 9 LysoPEs, 41 PCs, 24 PEs, 23 Plasmenyl-PCs, 10 Plasmenyl-PEs, 10 MGs, 63 DGs, 187 TGs, 2 MGDGs, 3 Cer[NDS]s, 22 Cer[NS]s, 2 GlcCer[NS]s, 14 SMs, 14 CEs, and 6 AcylCarnitines) were characterized. RESULTS: Fifty-five lipids were differentially altered (VIP > 1.5, p < 0.05) between the extraction techniques, which can be used as potential biomarkers to differentiate SPO extracted by various methods. Additionally, the contents of oleic acid and arachidic acid were abundant in all samples that may suggest their medicinal values and are conducive to in-depth research. CONCLUSIONS: These findings reveal the alterations of lipid profile and free fatty acid composition in SPO obtained with different extraction methods, providing a theoretical foundation for investigating its important components as functional factors in medicines and cosmetics.


Subject(s)
Lipids , Marmota , Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Lipids/chemistry , Lipids/analysis , Mass Spectrometry/methods , Plant Oils/chemistry , Plant Oils/analysis , Lipidomics/methods , Chemical Fractionation/methods
8.
J Oleo Sci ; 73(5): 657-664, 2024.
Article in English | MEDLINE | ID: mdl-38692889

ABSTRACT

This present work investigated the influence of black rice anthocyanins as antioxidants on the oxidation stability of oil. Malonic acid, succinic acid and succinic anhydride were grafted on black rice anthocyanins through acylation method to improve their antioxidant activity in oil. The results from fourier transform infrared spectroscopy (FTIR) showed new absorption peaks near 1744 cm -1 and 1514 cm -1 , which implied that malonic acid, succinic acid and succinic anhydride grafted on the -OH of glucoside and rutinoside through esterification reaction and resulted that the polarity of these were reduced. Total content of anthocyanin (TAC) decreased to 166. 3 mg/g, 163.7 mg/g and 150.2 mg/g, respectively after modification with succinic acid, malonic acid and succinic anhydride. Compared with native anthocyanins, the acylation of black rice anthocyanins partially reduced its antioxidant activity. In addition, DPPH clearance of molecular modified anthocyanins decreased to 62.6% (San-An). As revealed in the oil stability through the determination of primary oxidation products (PV) and secondary oxidation products (p-AV), Sa-An, Ma-An and San-An showed stronger antioxidant activity in Schaal oven accelerated oxidation test during 12 days than native black rice anthocyanin in both corn oil and flaxseed oil. Molecular modified black rice anthocyanins are expected to be used as colorants, antioxidants, etc. in oil-rich food.


Subject(s)
Anthocyanins , Antioxidants , Oryza , Oxidation-Reduction , Anthocyanins/chemistry , Anthocyanins/pharmacology , Antioxidants/pharmacology , Oryza/chemistry , Acylation , Plant Oils/chemistry , Plant Oils/pharmacology , Spectroscopy, Fourier Transform Infrared
9.
J Oleo Sci ; 73(5): 665-674, 2024.
Article in English | MEDLINE | ID: mdl-38692890

ABSTRACT

Sacha inchi seed oil is a food matrix rich in bioactive constituents, mainly polyunsaturated fatty acids. In this study, the characteristics of color, carotenoid content, tocopherols, and volatile aroma compounds in eight sacha inchi seed (Plukenetia volubilis L.) oil accessions were evaluated. Results showed that the oil obtained from the accessions presented a lightness and chroma of 91 to 98 units and 6 to 10 units respectively, while the hue angle ranged between 93 to 97 units. The total carotenoid content in the different accessions ranged from 0.6 to 1.5 mg/kg, while γ- and δ-tocopherol ranged from 861.6 to 1142 mg/kg and 587 to 717.1 mg/kg. In addition, the total content of tocopherols varied between 1450 and 1856 mg/kg and the δ/γ ratio ranged between 0.58 and 0.70. The oils from the accessions PER000408 (861 µg/kg) and PER000411 (896 µg/kg) were those with the higher volatile concentration, especially 1-hepten-3-ol, 2-nonanol, (E)-3-hexen- 1-ol, (E)-2-hexenal, and 1-hexanol. In this study, the variability of the oil obtained from 8 accessions were observed, from which promising accessions can be selected for continuous investigations of the new sacha inchi seed genotypes.


Subject(s)
Carotenoids , Plant Oils , Seeds , Tocopherols , Volatile Organic Compounds , Carotenoids/analysis , Tocopherols/analysis , Seeds/chemistry , Volatile Organic Compounds/analysis , Plant Oils/analysis , Plant Oils/chemistry , Brassicaceae/chemistry
10.
Molecules ; 29(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731433

ABSTRACT

The aim of this study was to investigate how dietary modifications with pomegranate seed oil (PSO) and bitter melon aqueous extract (BME) affect mineral content in the spleen of rats both under normal physiological conditions and with coexisting mammary tumorigenesis. The diet of Sprague-Dawley female rats was supplemented either with PSO or with BME, or with a combination for 21 weeks. A chemical carcinogen (7,12-dimethylbenz[a]anthracene) was applied intragastrically to induce mammary tumors. In the spleen of rats, the selected elements were determined with a quadrupole mass spectrometer with inductively coupled plasma ionization (ICP-MS). ANOVA was used to evaluate differences in elemental composition among experimental groups. Multivariate statistical methods were used to discover whether some subtle dependencies exist between experimental factors and thus influence the element content. Experimental factors affected the splenic levels of macroelements, except for potassium. Both diet modification and the cancerogenic process resulted in significant changes in the content of Fe, Se, Co, Cr, Ni, Al, Sr, Pb, Cd, B, and Tl in rat spleen. Chemometric analysis revealed the greatest impact of the ongoing carcinogenic process on the mineral composition of the spleen. The obtained results may contribute to a better understanding of peripheral immune organ functioning, especially during the neoplastic process, and thus may help develop anticancer prevention and treatment strategies.


Subject(s)
Momordica charantia , Plant Extracts , Plant Oils , Pomegranate , Rats, Sprague-Dawley , Spleen , Animals , Spleen/drug effects , Spleen/metabolism , Female , Rats , Pomegranate/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Momordica charantia/chemistry , Plant Oils/chemistry , Plant Oils/pharmacology , Dietary Supplements , Seeds/chemistry , Breast Neoplasms/chemically induced , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Mammary Neoplasms, Experimental/chemically induced , Mammary Neoplasms, Experimental/pathology , Mammary Neoplasms, Experimental/metabolism
11.
Molecules ; 29(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731460

ABSTRACT

Tanacetum parthenium L. (Asteraceae) is a perennial herbaceous plant with a long-standing historical use in traditional medicine. Recently Tanacetum parthenium L. essential oil has been associated with a promising potential for future applications in the pharmaceutical industry, in the cosmetics industry, and in agriculture. Investigations on the essential oil (EO) have indicated antimicrobial, antioxidant, and repellent activity. The present study aimed to evaluate the chemical composition of Bulgarian T. parthenium essential oil from two different regions, to compare the results to those reported previously in the literature, and to point out some of its future applications. The essential oils of the air-dried flowering aerial parts were obtained by hydrodistillation using a Clevenger-type apparatus. The chemical composition was evaluated using gas chromatography with mass spectrometry (GC-MS). It was established that the oxygenated monoterpenes were the predominant terpene class, followed by the monoterpene hydrocarbons. Significant qualitative and quantitative differences between both samples were revealed. Camphor (50.90%), camphene (16.12%), and bornyl acetate (6.05%) were the major constituents in the feverfew EO from the western Rhodope Mountains, while in the EO from the central Balkan mountains camphor (45.54%), trans-chrysanthenyl acetate (13.87%), and camphene (13.03%) were the most abundant components.


Subject(s)
Gas Chromatography-Mass Spectrometry , Oils, Volatile , Tanacetum parthenium , Oils, Volatile/chemistry , Bulgaria , Tanacetum parthenium/chemistry , Terpenes/chemistry , Terpenes/analysis , Camphor/chemistry , Camphor/analysis , Plant Oils/chemistry , Bicyclic Monoterpenes
12.
Molecules ; 29(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731484

ABSTRACT

In this study, we developed a green and multifunctional bioactive nanoemulsion (BBG-NEs) of Blumea balsamifera oil using Bletilla striata polysaccharide (BSP) and glycyrrhizic acid (GA) as natural emulsifiers. The process parameters were optimized using particle size, PDI, and zeta potential as evaluation parameters. The physicochemical properties, stability, transdermal properties, and bioactivities of the BBG-NEs under optimal operating conditions were investigated. Finally, network pharmacology and molecular docking were used to elucidate the potential molecular mechanism underlying its wound-healing properties. After parameter optimization, BBG-NEs exhibited excellent stability and demonstrated favorable in vitro transdermal properties. Furthermore, it displayed enhanced antioxidant and wound-healing effects. SD rats wound-healing experiments demonstrated improved scab formation and accelerated healing in the BBG-NE treatment relative to BBO and emulsifier groups. Pharmacological network analyses showed that AKT1, CXCL8, and EGFR may be key targets of BBG-NEs in wound repair. The results of a scratch assay and Western blotting assay also demonstrated that BBG-NEs could effectively promote cell migration and inhibit inflammatory responses. These results indicate the potential of the developed BBG-NEs for antioxidant and skin wound applications, expanding the utility of natural emulsifiers. Meanwhile, this study provided a preliminary explanation of the potential mechanism of BBG-NEs to promote wound healing through network pharmacology and molecular docking, which provided a basis for the mechanistic study of green multifunctional nanoemulsions.


Subject(s)
Antioxidants , Emulsifying Agents , Emulsions , Glycyrrhizic Acid , Molecular Docking Simulation , Wound Healing , Wound Healing/drug effects , Animals , Emulsions/chemistry , Emulsifying Agents/chemistry , Emulsifying Agents/pharmacology , Rats , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Green Chemistry Technology , Humans , Rats, Sprague-Dawley , Nanoparticles/chemistry , Plant Oils/chemistry , Plant Oils/pharmacology , Fabaceae/chemistry , Male , Particle Size , Cell Movement/drug effects
13.
Molecules ; 29(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731501

ABSTRACT

Bacterial infection is a thorny problem, and it is of great significance to developing green and efficient biological antibacterial agents that can replace antibiotics. This study aimed to rapidly prepare a new type of green antibacterial nanoemulsion containing silver nanoparticles in one step by using Blumea balsamifera oil (BBO) as an oil phase and tea saponin (TS) as a natural emulsifier and reducing agent. The optimum preparation conditions of the AgNPs@BBO-TS NE were determined, as well as its physicochemical properties and antibacterial activity in vitro being investigated. The results showed that the average particle size of the AgNPs@BBO-TS NE was 249.47 ± 6.23 nm, the PDI was 0.239 ± 0.003, and the zeta potential was -35.82 ± 4.26 mV. The produced AgNPs@BBO-TS NE showed good stability after centrifugation and 30-day storage. Moreover, the AgNPs@BBO-TS NE had an excellent antimicrobial effect on Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. These results demonstrated that the AgNPs@BBO-TS NE produced in this study can be used as an efficient and green antibacterial agent in the biomedical field.


Subject(s)
Anti-Bacterial Agents , Emulsions , Green Chemistry Technology , Metal Nanoparticles , Microbial Sensitivity Tests , Particle Size , Silver , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Silver/chemistry , Silver/pharmacology , Metal Nanoparticles/chemistry , Staphylococcus aureus/drug effects , Plant Oils/chemistry , Plant Oils/pharmacology , Pseudomonas aeruginosa/drug effects , Escherichia coli/drug effects , Escherichia coli/growth & development , Saponins/chemistry , Saponins/pharmacology
14.
Molecules ; 29(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731511

ABSTRACT

Alginate films plasticized with glycerol and enriched in raspberry and/or black currant seed oils were prepared via casting solution techniques. The intention was to create active films for food packaging where antioxidants in a film would deactivate oxidants in a packed product or its surroundings, improving conditions inside packaging and extending the shelf life of such a product. The prepared materials were characterized by physicochemical, spectroscopic, mechanical, water vapor transmission (WVTR), and antioxidant activity analysis. Infrared spectra of the alginate films with oils were similar to those without the additive; the band with a maximum at about 1740 cm-1 stood out. The prepared materials with oils were thicker, contained less water, were more yellow, and were less permeable to water vapor. Moreover, the presence of the oil in the films resulted in a slightly lower Young's modulus and lower stress at break values but higher strain at break. The antioxidant capacity of raspberry seed oil itself was about five times higher than that of black currant seed oil, and a similar trend was noticed for films modified with these oils. The results indicated that both oils could be used as active substances with antioxidant properties in food packaging.


Subject(s)
Alginates , Antioxidants , Food Packaging , Plant Oils , Ribes , Rubus , Seeds , Food Packaging/methods , Alginates/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Plant Oils/chemistry , Seeds/chemistry , Rubus/chemistry , Ribes/chemistry , Steam
15.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731554

ABSTRACT

BACKGROUND: Fatty acids are essential for human health. Currently, there is a search for alternative sources of fatty acids that could supplement such sources as staple crops or fishes. Turions of aquatic plants accumulate a variety of substances such as starch, free sugars, amino acids, reserve proteins and lipids. Our aim is to see if turions can be a valuable source of fatty acids. METHODS: Overwintering shoots and turions of aquatic carnivorous plants were collected. The plant material was extracted with hexane. The oils were analyzed using a gas chromatograph with mass spectrometer. RESULTS: The dominant compound in all samples was linolenic acid. The oil content was different in turions and shoots. The oil content of the shoots was higher than that of the turions, but the proportion of fatty acids in the oils from the shoots was low in contrast to the oils from the turions. The turions of Utricularia species were shown to be composed of about 50% fatty acids. CONCLUSIONS: The turions of Utricularia species can be used to obtain oil with unsaturated fatty acids. In addition, the high fatty acid content of turions may explain their ability to survive at low temperatures.


Subject(s)
Fatty Acids , Plant Shoots , Fatty Acids/analysis , Plant Shoots/chemistry , Gas Chromatography-Mass Spectrometry , alpha-Linolenic Acid/analysis , Plant Oils/chemistry , Plant Oils/analysis
16.
Molecules ; 29(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38731587

ABSTRACT

We aimed to obtain the optimal formula for human milk fat substitute (HMFS) through a combination of software and an evaluation model and further verify its practicability through an animal experiment. The results showed that a total of 33 fatty acid (FA) and 63 triglyceride (TAG) molecular species were detected in vegetable oils. Palmitic acid, oleic acid, linoleic acid, 18:1/16:0/18:1, 18:2/16:0/18:2, 18:1/18:1/18:1 and 18:1/18:2/18:1, were the main molecular species among the FAs and TAGs in the vegetable oils. Based on the HMFS evaluation model, the optimal mixed vegetable oil formula was blended with 21.3% palm oil, 2.8% linseed oil, 2.6% soybean oil, 29.9% rapeseed oil and 43.4% maize oil, with the highest score of 83.146. Moreover, there was no difference in the weight, blood routine indices or calcium and magnesium concentrations in the feces of the mice between the homemade mixed vegetable oil (HMVO) group and the commercial mixed vegetable oil (CMVO) group, while nervonic acid (C24:1) and octanoic acid (C8:0) were absorbed easily in the HMVO group. Therefore, these results demonstrate that the mixing of the different vegetable oils was feasible via a combination of computer software and an evaluation model and provided a new way to produce HMFS.


Subject(s)
Fat Substitutes , Fatty Acids , Milk, Human , Plant Oils , Software , Triglycerides , Humans , Animals , Plant Oils/chemistry , Fatty Acids/chemistry , Milk, Human/chemistry , Mice , Triglycerides/chemistry , Fat Substitutes/chemistry , Palm Oil/chemistry , Soybean Oil/chemistry , Linseed Oil/chemistry , Rapeseed Oil/chemistry , Corn Oil/chemistry , Caprylates/chemistry , Palmitic Acid/chemistry , Oleic Acid/chemistry
17.
Bol. latinoam. Caribe plantas med. aromát ; 23(3): 382-389, mayo 2024. ilus, tab, graf
Article in English | LILACS | ID: biblio-1538151

ABSTRACT

The extraction of geraniol from palmarosa oil using hydrotropic solvents was investigated. Palmarosa oil possesses an appealing rose aroma and properties like anti - inflammatory, antifungal, and antioxidant due to the presence of geraniol. The extraction of geraniol from palmarosa oil by using distillation methods like steam dis tillation and fractional distillation was a laborious process. So hydrotropes were tried for extraction. The geraniol yield and purity depend on parameters like concentration of hydrotrope, solvent volume ratio, and time period. Using the Box Benkhem Desig n (BBD), the extraction process was optimized. One of the major advantages of using hydrotropic solvents is that they were classified as green solvents, and recovery of solvents is also possible. To reduce the extraction time probe sonication is carried ou t. Different hydrotropic solvents with probe sonication are done on palmarosa oil by altering various process parameters to study the separation, yield, and purity.


Se investigó la extracción de geraniol del aceite de palmarosa utilizando solventes hidrotrópicos. El aceite de palmarosa posee un atractivo aroma a rosa y propiedades antiinflamatorias, antifúngicas y antioxidantes debido a la pr esencia de geraniol. La extracción de geraniol del aceite de palmarosa mediante métodos de destilación como la destilación por vapor y la destilación fraccionada ha sido un proceso laborioso. Por lo tanto, se probaron los hidrotropos para la extracción. El rendimiento y la pureza del geraniol dependen de parámetros como la concentración del hidrotropo, la relación de volumen del solvente y el período de tiempo. Se optimizó el proceso de extracción usando el diseño Box Benkhem (BBD). Una de las principales v entajas de usar solventes hidrotrópicos es que se clasifican como solventes verdes y también es posible recuperar los solventes. Para reducir el tiempo de extracción, se lleva a cabo una sonda de ultrasonido. Se realizan diferentes solventes hidrotropos co n sonda de ultrasonido en el aceite de palmarosa alterando varios parámetros del proceso para estudiar la separación, el rendimiento y la pureza.


Subject(s)
Cymbopogon/chemistry , Acyclic Monoterpenes/pharmacology , Acyclic Monoterpenes/chemistry , Plant Oils/pharmacology , Plant Oils/chemistry
18.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38646666

ABSTRACT

Asparagopsis taxiformis (Asparagopsis) has been shown to be highly efficacious at inhibiting the production of methane (CH4) in ruminants. To date, Asparagopsis has been primarily produced as a dietary supplement by freeze-drying to retain the volatile bioactive compound bromoform (CHBr3) in the product. Steeping of Asparagopsis bioactive compounds into a vegetable oil carrier (Asp-Oil) is an alternative method of stabilizing Asparagopsis as a ruminant feed additive. A dose-response experimental design used 3 Asp-Oil-canola oil blends, low, medium, and high Asp-Oil which provided 17, 34, and 51 mg Asparagopsis derived CHBr3/kg dry matter intake (DMI), respectively (in addition to a zero CHBr3 canola oil control), in a tempered-barley based feedlot finisher diet, fed for 59 d to 20 Angus heifers (five replicates per treatment). On four occasions, live weight was measured and CH4 emissions were quantified in respiration chambers, and blood, rumen fluid, and fecal samples were collected. At the end of the experiment, all animals were slaughtered, with carcasses graded, and samples of meat and edible offal collected for testing of consumer sensory qualities and residues of CHBr3, bromide, and iodide. All Asp-Oil treatments reduced CH4 yield (g CH4/kg DMI, P = 0.008) from control levels, with the low, medium, and high Asp-Oil achieving 64%, 98%, and 99% reduction, respectively. Dissolved hydrogen increased linearly with increasing Asp-Oil inclusion, by more than 17-fold in the high Asp-Oil group (P = 0.017). There was no effect of Asp-Oil treatment on rumen temperature, pH, reduction potential, volatile fatty acid and ammonia production, rumen pathology, and histopathology (P > 0.10). There were no differences in animal production and carcass parameters (P > 0.10). There was no detectable CHBr3 in feces or any carcass samples (P > 0.10), and iodide and bromide residues in kidneys were at levels unlikely to lead to consumers exceeding recommended maximum intakes. Overall, Asp-Oil was found to be safe for animals and consumers of meat, and effective at reducing CH4 emissions and yield by up to 99% within the range of inclusion levels tested.


Red seaweed, Asparagopsis taxiformis (Asparagopsis), has been shown to be highly effective at inhibiting the production of methane (CH4) in ruminants. An alternative to feeding whole, freeze-dried Asparagopsis is steeping the biomass in vegetable oil to stabilize the bioactive compounds (Asp-Oil) and feeding Asp-Oil to ruminants as a component of their dietary intake. This experiment measured the CH4 reduction potential and safety of Asp-Oil in a trial with 20 Angus heifers, fed iso-fat feedlot diets containing one of the three levels of Asp-Oil, or a control oil. Compared to the control, bromoform inclusion levels of 17, 34, and 51 mg/kg of dry matter (DM; low, medium, high) reduced CH4 yield (g CH4/kg DM intake) by 64%, 98%, and 99%, respectively. There were no effects on animal production or carcass characteristics. There were no impacts on animal health, welfare, or rumen function. Carcasses were safe for human consumption, and there was no bromoform detected in any carcass samples. Overall, Asp-Oil was found to effectively reduce CH4 emissions and is safe for animals and consumers of meat and edible offal.


Subject(s)
Animal Feed , Diet , Methane , Rapeseed Oil , Animals , Cattle , Animal Feed/analysis , Methane/metabolism , Diet/veterinary , Rapeseed Oil/chemistry , Rapeseed Oil/pharmacology , Female , Dietary Supplements/analysis , Rumen/metabolism , Rumen/drug effects , Plant Oils/pharmacology , Plant Oils/chemistry
19.
Int J Biol Macromol ; 267(Pt 1): 131292, 2024 May.
Article in English | MEDLINE | ID: mdl-38580015

ABSTRACT

To enhance the water-resistance and antibacterial properties of KGM films, mandarin oil (MO), was directly emulsified by pectin and then dispersed to the KGM matrix. The effect of MO concentration (0, 0.5, 1.0, 1.5, and 2 wt%) on the performance of the film-forming emulsions as well as the emulsion films was investigated. The results revealed that pectin could encapsulate and protect MO, and KGM as film matrix could further contributed to the high stability of the film-forming emulsions. The FT-IR, XRD, and SEM suggested that MO stabilized by pectin was uniformly distributed in the KGM matrix. The compatibility and good interaction between KGM and pectin contributed to highly dense and compact structure. Furthermore, increasing the concentration of MO effectively improved water-resistance, oxygen barrier, and antimicrobial activity of the KGM based films. The 1.5 wt% MO loaded KGM film had the highest tensile strength (72.22 MPa) and water contact angle (θ = 95.73°), reduced the WVP and oxygen permeability by about 25.8 % and 32.8 times, respectively, prolonged the shelf life of strawberries for 8 days. As demonstrated, the 1.5 wt% MO-loaded KGM film has considerable potential for high-performance natural biodegradable active films to ensure food safety and reduce environmental impacts.


Subject(s)
Emulsions , Fruit , Mannans , Pectins , Pectins/chemistry , Emulsions/chemistry , Fruit/chemistry , Mannans/chemistry , Permeability , Food Packaging/methods , Food Preservation/methods , Tensile Strength , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Plant Oils/chemistry , Plant Oils/pharmacology , Water/chemistry
20.
Int J Biol Macromol ; 267(Pt 1): 131426, 2024 May.
Article in English | MEDLINE | ID: mdl-38583836

ABSTRACT

This study aimed to evaluate the physical and chemical alterations in rice starch modified by heat-moisture treatment (HMT) using an autoclave and a microwave, in association with avocado oil (AO), and evaluate the effects on thermal and structural properties, in vitro digestibility, and estimated glycemic index (eGI). Samples were adjusted to 30 % (w/w) moisture and 2, 4 and 8 % AO. HMT was conducted at 110 °C for 1 h in the autoclave (A0%, A2%, A4%, and A8%) and at 50 °C for 3 min in the microwave (M0%, M2%, M4%, and M8%). Both procedures did not alter the starch crystallinity pattern (type-A). Pasting viscosity, setback, relative crystallinity, and gelatinisation enthalpy decreased as the AO content increased in both HMT processes. The M8% showed reduced digestibility, decreased eGI (72.99, p < 0.05), and lower starch hydrolysis concentration (62.75 %, p < 0.05). The application of HMT with the addition of AO may be an interesting process for obtaining resistant starch since its content increased after both treatments (A8%, M4%, and M8%). The microwave process proved efficient, making it possible to use a lower temperature, less time, and less energy for modification and obtain starches with improved characteristics.


Subject(s)
Hot Temperature , Microwaves , Oryza , Persea , Plant Oils , Starch , Starch/chemistry , Oryza/chemistry , Persea/chemistry , Plant Oils/chemistry , Viscosity , Hydrolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...